Characteristics of Soil Physicochemical Properties and Microbial Community of Mulberry (Morus alba L.) and Alfalfa (Medicago sativa L.) Intercropping System in Northwest Liaoning

Microorganisms. 2023 Jan 1;11(1):114. doi: 10.3390/microorganisms11010114.

Abstract

Medicinal plant intercropping is a new intercropping method. However, as a new intercropping model, the influence of intercropping of alfalfa on microorganisms has not been clarified clearly. In this study, the composition and diversity of microbial communities in alfalfa intercropping were studied, and the differences of bacterial and fungal communities and their relationships with environmental factors are discussed. Intercropping significantly decreased soil pH and significantly increased soil total phosphorus (TP) content, but did not increase soil total carbon (TC) and total nitrogen (TN). Intercropping can increase the relative abundance of Actinobacteria and reduce the relative abundance of Proteobacteria in soil. The relative abundance and diversity of bacteria were significantly correlated with soil pH and TP, while the diversity of fungi was mainly correlated with TC, TN and soil ecological stoichiometry. The bacterial phylum was mainly related to pH and TP, while the fungal phylum was related to TC, TN, C: P and N: P. The present study revealed the stoichiometry of soil CNP and microbial community characteristics of mulberry-alfalfa intercropping soil, clarified the relationship between soil stoichiometry and microbial community composition and diversity, and provided a theoretical basis for the systematic management of mulberry-alfalfa intercropping in northwest Liaoning.

Keywords: Medicago sativa L.; Morus alba L.; ecological stoichiometry; intercropping; soil microorganism.