Recent Trends and Applications of Nanoencapsulated Bacteriocins against Microbes in Food Quality and Safety

Microorganisms. 2022 Dec 28;11(1):85. doi: 10.3390/microorganisms11010085.

Abstract

Bacteriocins are ribosomal-synthesized peptides or proteins produced by bacterial strains and can inhibit pathogenic bacteria. Numerous factors influence the potential activity of bacteriocins in food matrices. For example, food additives usage, chemical composition, physical conditions of food, and sensitivity of proteolytic enzymes can constrain the application of bacteriocins as beneficial food preservatives. However, novel bacteriocin nanoencapsulation has appeared as an encouraging solution. In this review, we highlight the bacteriocins produced by Gram-negative bacteria and Gram-positive bacteria including lactic acid bacteria that have shown positive results as potential food preservatives. In addition, this review encompasses the major focus on bacteriocins encapsulation with nanotechnology to enhance the antimicrobial action of bacteriocins. Several strategies can be employed to encapsulate bacteriocins; however, the nanotechnological approach is one of the most effective strategies for avoiding limitations. Nanoparticles such as liposomes, chitosan, protein, and polysaccharides have been discussed to show their importance in the nanoencapsulation method. The nanoparticles are combined with bacteriocins to develop the nano-encapsulated bacteriocins from Gram-negative and Gram-positive bacteria including LAB. In food systems, nanoencapsulation enhances the stability and antimicrobial functionality of active peptides. This nanotechnological application provides a formulation of a broad range of antimicrobial peptides at the industry-scale level. Nano-formulated bacteriocins have been discussed along with examples to show a broader antimicrobial spectrum, increase bacteriocins' applicability, extend antimicrobial spectrum and enhance stability.

Keywords: Gram-negative bacteria; Gram-positive bacteria; antimicrobial activity; bacteriocins; lactic acid bacteria; nanoencapsulation.

Publication types

  • Review

Grants and funding

This research was funded, in part, by Grants (project Number NC.X337-5-21-170-1 and NC.X341-5-21-170-1) in addition to the 1890 capacity building project from the National Institute of Food and Agriculture (NIFA).