Changes in Bone Marrow Fatty Acids Early after Ovariectomy-Induced Osteoporosis in Rats and Potential Functions

Metabolites. 2022 Dec 26;13(1):36. doi: 10.3390/metabo13010036.

Abstract

The aim of this study was to investigate the changes in bone marrow fatty acids early after ovariectomy-induced osteoporosis in rats, and explore the potential function of the bone marrow fatty acids. Ninety-six female Sprague Dawley rats (12 weeks) were randomly divided into an ovariectomized (OVX) group and Sham group (N = 48/group) and received ovariectomy or Sham surgery, respectively. After 3, 5, 7,14, 21 and 28 days, eight rats in each group were sacrificed to detect the composition of bone marrow fatty acids by means of gas chromatography-mass spectrometry and evaluate the trabecular bone microarchitecture by means of microCT. Bone marrow rinsing fluid and serum were collected for the detection of nitric oxide synthase/nitric oxide (NOS/NO) and bone metabolism related parameters, respectively. Our results demonstrated that the bone microstructure was damaged significantly from 14 days after OVX surgery onwards. Sample clustering and group separation were observed between the OVX group and Sham group 3 and 14 days after surgery, which suggested the role of bone marrow fatty acids in the early stage of postmenopausal osteoporosis. Palmitoleate, myristate and arachidonate were found to play an important role in classification between the OVX group and Sham group on the 3rd day after surgery (VIP > 1, p < 0.05). Palmitoleate, myristate, alpha linolenate, stearate and eicosenoate were found to play an important role in classification between the OVX group and Sham group on the 14th day after surgery (VIP > 1, p < 0.05). The levels of myristate, palmitoleate, alpha linolenate and eicosenoate were significantly decreased in the OVX group, while the levels of arachidonate and stearate were significantly increased in OVX group (p < 0.05). Additionally, myristate, palmitoleate, alpha linoleate and eicosenoate were negatively correlated with C-terminal telopeptide of type 1 collagen (CTX-1, a bone resorption marker), while arachidonate was negative correlated with osteocalcin (OCN, a bone formation marker) (p < 0.05). A significant correlation was also found between eicosenoate and NOS (p < 0.05). Profound bone marrow fatty acids changes have taken place in the early stage of post-menopausal osteoporosis. They may affect bone formation though affecting the differentiation and function of osteoclasts or osteoblasts, respectively. The NOS/NO system may mediate the influence of eicosenoate on bone formation.

Keywords: GC-MS; fatty acid; lipids; osteoporosis.