Simulation and Experimental Verification of Die Quenching Deformation of Aviation Carburized Face Gear

Materials (Basel). 2023 Jan 10;16(2):690. doi: 10.3390/ma16020690.

Abstract

The tooth width and length of face gear limit control the strength of face gear, and heat treatments are often used to improve the hardness and strength of face gear. However, heat treatments will often cause additional deformations, which will affect the dimensional accuracy of the face gear. In this paper, to effectively control the deformation and ensure the accuracy of the face gear, the finite element method was used to establish the calculation model of the face gear die quenching method, and thus, the influence of die on the gear quenching deformation was analyzed. Next, the accuracy of the calculation model was verified by the pressure quenching experiment. The results demonstrated that the inconsistent phase transformation between the surface and the center of the face gear was the key factor affecting the deformation due to the influence of the carbon content. Compared with die-less quenching, the inner hole-die can effectively limit the radial shrinkage deformation of the face gear. With the increase of the upper-die pressure, the axial and radial deformations of the face gear gradually became stable. In the actual production, the load of dies should be reasonably selected based on the gear accuracy requirements.

Keywords: carburizing-quenching; deformation; die quenching; face gear.