Production, Mechanical and Functional Properties of Long-Length TiNiHf Rods with High-Temperature Shape Memory Effect

Materials (Basel). 2023 Jan 9;16(2):615. doi: 10.3390/ma16020615.

Abstract

In the present work, the possibility of manufacturing long-length TiNiHf rods with a lowered Hf content and a high-temperature shape memory effect in the range of 120-160 °C was studied. Initial ingots with 1.5, 3.0 and 5.0 at.% Hf were obtained by electron beam melting in a copper water-cooled stream-type mold. The obtained ingots were rotary forged at the temperature of 950 °C, with the relative strain from 5 to 10% per one pass. The obtained results revealed that the ingots with 3.0 and 5.0 at.% Hf demonstrated insufficient technological plasticity, presumably because of the excess precipitation of (Ti,Hf)2Ni-type particles. The premature destruction of ingots during the deformation process does not allow obtaining high-quality long-length rods. A long-length rod with a diameter of 3.5 mm and a length of 870 mm was produced by rotary forging from the ingot with 1.5 at.% Hf. The obtained TiNiHf rod had relatively high values of mechanical properties (a dislocation yield stress σy of 800 MPa, ultimate tensile strength σB of 1000 MPa, and elongation to fracture δ of 24%), functional properties (a completely recoverable strain of 5%), and a required finishing temperature of shape recovery of 125 °C in the as-forged state and of 155 °C after post-deformation annealing at 550 °C for 2 h.

Keywords: NiTiHf; mechanical properties; rotary forging; shape memory alloys; structure.