Ordered Porous Electrodes Obtained Using LIFT for Electrochemical Applications

Materials (Basel). 2023 Jan 7;16(2):596. doi: 10.3390/ma16020596.

Abstract

Numerous synthetic techniques for the fabrication of porous metal electrodes were developed in recent decades. A very promising and facile route is the 3D printing of structures, which can be designed directly on the computer first. However, the current techniques allow structures to be printed with a resolution down to 20 µm, which is still quite rough regarding tuning the pore distribution and diameter of electrode materials for potential applications. For the first time, a laser-induced forward transfer (LIFT) process was used to 3D print metal voxels on a solid surface, resulting in a porous electrocatalytically active gold (Au) electrode film. Porous Au electrodes produced using LIFT showed an increase in the electrochemically active surface area (SA) by a factor of four compared with a sputtered dense Au film when characterized using cyclic voltammetry (CV) in Ar-saturated 0.1 M KOH. Therefore, the LIFT process can be considered very promising for the printing of ordered porous electrodes with high surface areas for electrochemical applications.

Keywords: 3D printing; LIFT; electrochemically active surface area; porous ordered metal electrodes; roughness factor.

Grants and funding