Effect of Weld Length on Strength, Fatigue Behaviour and Microstructure of Intersecting Stitch-Friction Stir Welded AA 6016-T4 Sheets

Materials (Basel). 2023 Jan 5;16(2):533. doi: 10.3390/ma16020533.

Abstract

Friction stir welding is a promising joining process for boosting lightweight construction in the industrial and automotive sector by enabling the weldability of high-strength aluminum alloys. However, the high process forces usually result in large and heavy equipment for this joining method, which conflicts with flexible application. In order to circumvent this issue, a friction stir welding gun has been developed which is capable of producing short stitch welds-either stand-alone as an alternative to spot welds or merging into each other appearing like a conventional friction stir weld. In this study, the influence of the stitch seam length on the strength properties of intersecting friction stir welds is investigated, and the weld is characterized. For this purpose, EN AW-6016 T4 sheets were welded in butt joint configuration with varying stitch lengths between 2 and 15 mm. Both the static and dynamic strength properties were investigated, and hardness and temperature measurements were carried out. The results show a scalability of the tensile strength as well as the fatigue strength over the stitch seam length, while the substitute proof strength is not affected. Hereby, the tensile strength reached up 80% of the base materials tensile strength with the chosen parameter setup. Likewise, the stitch weld length influences the hardness characteristics of the welds in the transition area.

Keywords: AA6016; EN AW-6016; fatigue strength; friction stir welding; friction stitch welding; strength characteristics; weld length.