Will the Interactions of Some Platinum (II)-Based Drugs with B-Vitamins Reduce Their Therapeutic Effect in Cancer Patients? Comparison of Chemotherapeutic Agents such as Cisplatin, Carboplatin and Oxaliplatin-A Review

Int J Mol Sci. 2023 Jan 12;24(2):1548. doi: 10.3390/ijms24021548.

Abstract

Pt (II) derivatives show anti-cancer activity by interacting with nucleobases of DNA, thus causing some spontaneous and non-spontaneous reactions. As a result, mono- and diaqua products are formed which further undergo complexation with guanine or adenine. Consequently, many processes are triggered, which lead to the death of the cancer cell. The theoretical and experimental studies confirm that such types of interactions can also occur with other chemical compounds. The vitamins from B group have a similar structure to the nucleobases of DNA and have aromatic rings with single-pair orbitals. Theoretical and experimental studies were performed to describe the interactions of B vitamins with Pt (II) derivatives such as cisplatin, oxaliplatin and carboplatin. The obtained results were compared with the values for guanine. Two levels of simulations were implemented at the theoretical level, namely, B3LYP/6-31G(d,p) with LANL2DZ bases set for platinum atoms and MN15/def2-TZVP. The polarizable continuum model (IEF-PCM preparation) and water as a solvent were used. UV-Vis spectroscopy was used to describe the drug-nucleobase and drug-B vitamin interactions. Values of the free energy (ΔGr) show spontaneous reactions with mono- and diaqua derivatives of cisplatin and oxaliplatin; however, interactions with diaqua derivatives are more preferable. The strength of these interactions was also compared. Carboplatin products have the weakest interaction with the studied structures. The presence of non-covalent interactions was demonstrated in the tested complexes. A good agreement between theory and experiment was also demonstrated.

Keywords: cancer treatment; carboplatin; cisplatin; oxaliplatin; platinum-based drugs; vitamin B.

Publication types

  • Review

MeSH terms

  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacology
  • Antineoplastic Agents* / therapeutic use
  • Carboplatin / chemistry
  • Carboplatin / pharmacology
  • Carboplatin / therapeutic use
  • Cisplatin / chemistry
  • Cisplatin / pharmacology
  • Cisplatin / therapeutic use
  • Humans
  • Neoplasms* / drug therapy
  • Organoplatinum Compounds / chemistry
  • Organoplatinum Compounds / pharmacology
  • Organoplatinum Compounds / therapeutic use
  • Oxaliplatin / pharmacology
  • Oxaliplatin / therapeutic use
  • Platinum / chemistry
  • Vitamin B Complex* / pharmacology
  • Vitamin B Complex* / therapeutic use

Substances

  • Cisplatin
  • Carboplatin
  • Oxaliplatin
  • Platinum
  • Vitamin B Complex
  • Antineoplastic Agents
  • Organoplatinum Compounds

Grants and funding

This work was financed by Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz.