Alternative Splicing of TaHsfA2-7 Is Involved in the Improvement of Thermotolerance in Wheat

Int J Mol Sci. 2023 Jan 5;24(2):1014. doi: 10.3390/ijms24021014.

Abstract

High temperature has severely affected plant growth and development, resulting in reduced production of crops worldwide, especially wheat. Alternative splicing (AS), a crucial post-transcriptional regulatory mechanism, is involved in the growth and development of eukaryotes and the adaptation to environmental changes. Previous transcriptome data suggested that heat shock transcription factor (Hsf) TaHsfA2-7 may form different transcripts by AS. However, it remains unclear whether this post-transcriptional regulatory mechanism of TaHsfA2-7 is related to thermotolerance in wheat (Triticum aestivum). Here, we identified a novel splice variant, TaHsfA2-7-AS, which was induced by high temperature and played a positive role in thermotolerance regulation in wheat. Moreover, TaHsfA2-7-AS is predicted to encode a small truncated TaHsfA2-7 isoform, retaining only part of the DNA-binding domain (DBD). TaHsfA2-7-AS is constitutively expressed in various tissues of wheat. Notably, the expression level of TaHsfA2-7-AS is significantly up-regulated by heat shock (HS) during flowering and grain-filling stages in wheat. Further studies showed that TaHsfA2-7-AS was localized in the nucleus but lacked transcriptional activation activity. Ectopic expression of TaHsfA2-7-AS in yeast exhibited improved thermotolerance. Compared to non-transgenic plants, overexpression of TaHsfA2-7-AS in Arabidopsis results in enhanced tolerance to heat stress. Simultaneously, we also found that TaHsfA1 is directly involved in the transcriptional regulation of TaHsfA2-7 and TaHsfA2-7-AS. In summary, our findings demonstrate the function of TaHsfA2-7-AS splicing variant in response to heat stress and establish a link between regulatory mechanisms of AS and the improvement of thermotolerance in wheat.

Keywords: alternative splicing; heat shock transcription factor; heat stress; thermotolerance; wheat.

MeSH terms

  • Alternative Splicing
  • Arabidopsis* / metabolism
  • Gene Expression Regulation, Plant
  • Heat-Shock Response / genetics
  • Hot Temperature
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Plants, Genetically Modified / genetics
  • Plants, Genetically Modified / metabolism
  • Thermotolerance* / genetics
  • Triticum / metabolism

Substances

  • Plant Proteins