Blood-Based Immune Protein Markers of Disease Progression in Murine Models of Acute and Chronic Inflammatory Bowel Disease

Biomedicines. 2023 Jan 5;11(1):140. doi: 10.3390/biomedicines11010140.

Abstract

Inflammatory bowel disease (IBD) is a chronic ailment afflicting millions of people worldwide, with the majority of recognized cases within industrialized countries. The impacts of IBD at the individual level are long-lasting with few effective treatments available, resulting in a large burden on the health care system. A number of existing animal models are utilized to evaluate novel treatment strategies. Two commonly used models are (1) acute colitis mediated by dextran sulphate sodium (DSS) treatment of wild-type mice and (2) chronic colitis mediated by the transfer of proinflammatory T cells into immunodeficient mice. Despite the wide use of these particular systems to evaluate IBD therapeutics, the typical readouts of clinical disease progression vary depending on the model used, which may be reflective of mechanistic differences of disease induction. The most reliable indicator of disease in both models remains intestinal damage which is typically evaluated upon experimental endpoint. Herein, we evaluated the expression profile of a panel of cytokines and chemokines in both DSS and T cell transfer models in an effort to identify a number of inflammatory markers in the blood that could serve as reliable indicators of the relative disease state. Out of the panel of 25 markers tested, 6 showed statistically significant shifts with the DSS model, compared to 11 in the T cell transfer model with IL-6, IL-13, IL-22, TNF-α and IFN-γ being common markers of disease in both models. Our data highlights biological differences between animal models of IBD and helps to guide future studies when selecting efficacy readouts during the evaluation of experimental IBD therapeutics.

Keywords: T cell transfer; biomarker; chemokines; colitis; cytokines; dextran sulphate sodium (DSS); inflammatory bowel disease (IBD); protein marker.