Evaluation of Antimicrobial Resistance of Different Phylogroups of Escherichia coli Isolates from Feces of Breeding and Laying Hens

Antibiotics (Basel). 2022 Dec 23;12(1):20. doi: 10.3390/antibiotics12010020.

Abstract

Animal and food sources are seen as a potential transmission pathway of multi-drug resistance (MDR) micro-organisms to humans. Escherichia. coli is frequently used as an indicator of fecal contamination in the food industry and known as a reservoir of antimicrobial resistance genes (ARGs). Microbial contamination as a major outcome for the poultry and egg industry and is a serious public health problem. In the present study we performed the quantification of β-glucoronidase positive E. coli in 60 fecal samples of breeding and laying hens collected in Portugal in 2019. Phylogenetic and pathotypic characterization, antimicrobial susceptibility, and detection of resistant extended-spectrum β-lactamase (ESBL) genes were assessed. The phylogenetic and pathogenic characterization and detection of ESBL genes were assessed by real-time PCR and antimicrobial susceptibility was evaluated using the disk diffusion method. Overall, E. coli quantification was 6.03 log CFU/g in breeding hens and 6.02 log CFU/g in laying hens. The most frequent phylogroups were B1. None of the isolates was classified as diarrheagenic E. coli (DEC). In total, 57% of the isolates showed MDR and 3.8% were positive for ESBL. Our study highlights that consumers may be exposed to MDR E. coli, presenting a major hazard to food safety and a risk to public health.

Keywords: ESBL; Escherichia coli; MDR; breeding hens; egg laying hens; fecal samples; phylogroup.

Grants and funding

This research received no external funding.