Impact of Initial Population Density of the Dubas Bug, Ommatissus lybicus (Hemiptera: Tropiduchidae), on Oviposition Behaviour, Chlorophyll, Biomass and Nutritional Response of Date Palm (Phoenix dactylifera)

Insects. 2022 Dec 22;14(1):12. doi: 10.3390/insects14010012.

Abstract

The Dubas bug (Ommatissus lybicus) is an economically significant pest of date palms. In this study, the effect of the population density of O. lybicus on chlorophyll, measured by the soil plant analysis development (SPAD) chlorophyll meter, palm biomass, and the nutritional composition of date palms, were investigated. A further objective was to determine significant relationships between the population density of O. lybicus, the number of honeydew droplets, and oviposited eggs. Reductions of up to 8-11% and 29-34% in chlorophyll content and plant biomass, respectively, were caused by infestations exceeding 300 nymphs per palm seedling. Increasing the population density of O. lybicus to 600 insects per palm decreased oviposition by females, suggesting intraspecific competition for resources. There was a significant relationship between honeydew droplets produced by the pest population and chlorophyll content in the rachis, suggesting that treatment can be triggered at 3-6 nymphs/leaflet. Egg oviposition was preferentially on the rachis. Ca, Mg, K, and P were the main nutrients affected by the activity of the pest. Mg content was associated with reduced chlorophyll content under increasing pest density, suggesting that supplemental nutrition can be potentially utilized to sustain chlorophyll and increase palm tolerance to pest infestation.

Keywords: Ommatissus lybicus; chlorophyll; date palm biomass; honeydew quantification; oviposition behaviour; plant nutrition.