A Novel Approach, Based on the Combined Action of Chitosan Hydrogel and Laccases, for the Removal of Dyes from Textile Industry Wastewaters

Gels. 2023 Jan 4;9(1):41. doi: 10.3390/gels9010041.

Abstract

Dyes are considered as one the most important classes of contaminants that threaten the environment and human life. The synergy between the adsorption capacity of chitosan hydrogels and the catalytic properties of the enzyme laccase was exploited to improve the removal of contaminants from a liquid stream. The adsorption capacity of a chitosan hydrogel was tested on three different textile dyes. The effect of pH on the adsorption efficiency was dependent on the dye tested: the removal of methylene blue (MB), a cationic dye, was more effective at alkaline values of pH, whereas bromophenol blue (BPB) and Coomassie brilliant blue (BB), both anionic dyes, were more effectively removed under acid environments. The use of laccase immobilized onto chitosan has significantly improved the efficiency of dye removal, exploiting the synergy between the adsorption capacity of chitosan and the catalytic properties of the enzyme. The simultaneous processes of adsorption and enzymatic degradation improved the dye removal whatever the pH value adopted, making the removal efficiency less dependent from the pH changes. The chitosan used as a support for the immobilization of laccases showed good stability under repeated cycles, demonstrating the feasibility of the method developed for the application in wastewater remediation.

Keywords: adsorption/degradation of dyes; biopolymer; crosslinking; laccase onto chitosan hydrogel; reusability.

Grants and funding

This research received no external funding.