2D Heterolayer-Structured MoSe2-Carbon with Fast Kinetics for Sodium-Ion Capacitors

Inorg Chem. 2023 Jan 30;62(4):1602-1610. doi: 10.1021/acs.inorgchem.2c03819. Epub 2023 Jan 20.

Abstract

Two-dimensional (2D) layered MoSe2 has been demonstrated to be a promising electrode material for new energy storage systems. However, its nature of poor conductivity and the undesirable interlayer spacing hinder its further application. In this paper, a general and simple plasma-enhanced chemical vapor deposition method is proposed to produce 2D heterolayer-structured MoSe2-carbon (MoSe2/C) with carbon atoms inserted in the MoSe2 layers. After morphology optimization, when applying flat-type MoSe2/C-200 nanosheets with an enlarged interlayer spacing of 0.79 nm as the anode and activated carbon as the cathode, the assembled sodium-ion hybrid capacitors can reach a maximum energy/power density of 116.5 W h kg-1/107.5 W kg-1 and exhibit superior cycling durability (91.3% capacitance retention after 4000 cycles at 1 A g-1). The good electrochemical property can be ascribed to the enlarged interlayer spacing that can offer fast diffusion channels for Na ions, and the carbon layer sandwiched in the MoSe2 layer can not only enhance the electron transfer, accelerating the reaction kinetics, but also alleviate the volume change of MoSe2, ensuring the good stability of the electrode. The proposed approach can also be extended to other 2D transition metal chalcogenide (TMC) materials for constructing the TMC/C heterostructures for the application in energy storage systems.