Combining Metformin and Drug-Loaded Kidney-Targeting Micelles for Polycystic Kidney Disease

Cell Mol Bioeng. 2022 Dec 22;16(1):55-67. doi: 10.1007/s12195-022-00753-9. eCollection 2023 Feb.

Abstract

Introduction: Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease that leads to eventual renal failure. Metformin (MET), an AMP-activated protein kinase (AMPK) activator already approved for type 2 diabetes, is currently investigated for ADPKD treatment. However, despite high tolerability, MET showed varying therapeutic efficacy in preclinical ADPKD studies. Thus, newer strategies have combined MET with other ADPKD small molecule drug candidates, thereby targeting multiple ADPKD-associated signaling pathways to enhance therapeutic outcomes through potential drug synergy. Unfortunately, the off-target side effects caused by these additional drug candidates pose a major hurdle. To address this, our group has previously developed kidney-targeting peptide amphiphile micelles (KMs), which displayed significant kidney accumulation in vivo, for delivering drugs to the site of the disease.

Methods: To mitigate the adverse effects of ADPKD drugs and evaluate their therapeutic potential in combination with MET, herein, we loaded KMs with ADPKD drug candidates including salsalate, octreotide, bardoxolone methyl, rapamycin, tolvaptan, and pioglitazone, and tested their in vitro therapeutic efficacy when combined with free MET. Specifically, after determining the 40% inhibitory concentration for each drug (IC40), the size, morphology, and surface charge of drug-loaded KMs were characterized. Next, drug-loaded KMs were applied in combination with MET to treat renal proximal tubule cells derived from Pkd1flox/-:TSLargeT mice in 2D proliferation and 3D cyst model.

Results: MET combined with all drug-loaded KMs demonstrated significantly enhanced efficacy as compared to free drugs in inhibiting cell proliferation and cyst growth. Notably, synergistic effects were found for MET and KMs loaded with either salsalate or rapamycin as determined by Bliss synergy scores.

Conclusion: Together, we show drug synergy using drug-loaded nanoparticles and free MET for the first time and present a novel nanomedicine-based combinatorial therapeutic approach for ADPKD with enhanced efficacy.

Supplementary information: The online version contains supplementary material available at 10.1007/s12195-022-00753-9.

Keywords: Autosomal dominant polycystic kidney disease; Combinatorial therapy; Metformin; Nanoparticle.