Two-dimensional nanomaterials: fascinating materials in biomedical field

Sci Bull (Beijing). 2019 Nov 30;64(22):1707-1727. doi: 10.1016/j.scib.2019.09.021. Epub 2019 Sep 20.

Abstract

Due to their high anisotropy and chemical functions, two-dimensional (2D) nanomaterials have attracted increasing interest and attention from various scientific fields, including functional electronics, catalysis, supercapacitors, batteries and energy materials. In the biomedical field, 2D nanomaterials have made significant contributions to the field of nanomedicine, especially in drug/gene delivery systems, multimodal imaging, biosensing, antimicrobial agents and tissue engineering. 2D nanomaterials such as graphene/graphene oxide (GO)/reduced graphene oxide (rGO), silicate clays, layered double hydroxides (LDHs), transition metal dichalcogenides (TMDs), transition metal oxides (TMOs), black phosphorus (BP), graphitic carbon nitride (g-C3N4), hexagonal boron nitride (h-BN), antimonene (AM), boron nanosheets (B NSs) and tin telluride nanosheets (SnTe NSs) possess excellent physical, chemical, optical and biological properties due to their uniform shapes, high surface-to-volume ratios and surface charge. In this review, we first introduce the properties, structures and synthetic strategies of different configurations of 2D nanomaterials. Recent advances and paradigms of 2D nanomaterials in a variety of biomedical applications, ranging from drug delivery, cancer treatment, bioimaging and tissue engineering to biosensing are discussed afterwards. In the final part, we foresee the development prospects and challenges of 2D nanomaterials after summarizing the research status of ultrathin 2D nanomaterials.

Keywords: 2D nanomaterials; Biosensing; Drug delivery; Tissue engineering.

Publication types

  • Review