Experimental demonstration of suppressing residual geometric dephasing

Sci Bull (Beijing). 2019 Dec 15;64(23):1757-1763. doi: 10.1016/j.scib.2019.09.007. Epub 2019 Sep 10.

Abstract

The geometric phase is regarded as a promising strategy in fault tolerance quantum information processing (QIP) domain due to its phase only depending on the geometry of the path executed. However, decoherence caused by environmental noise will destroy the geometric phase. Traditional dynamic decoupling sequences can eliminate dynamic dephasing but can not reduce residual geometric dephasing, which is still vital for high-precision quantum manipulation. In this work, we experimentally demonstrate effective suppression of residual geometric dephasing with modified dynamic decoupling schemes, using a single trapped 171Yb+ ion. The experimental results show that the modified schemes can reduce dephasing rate up to more than one order of magnitude compared with traditional dynamic decoupling schemes, where residual geometric dephasing dominates. Besides, we also investigate the impact of intensity and correlation time of the low-frequency noise on coherence of the quantum system. And we confirm these methods can be used in many cases.

Keywords: Berry phase; Dynamic decoupling; Geometric dephasing; Ion trap.