Fine mapping and cloning of a novel BrSCC1 gene for seed coat color in Brassica rapa L

Theor Appl Genet. 2023 Jan;136(1):11. doi: 10.1007/s00122-023-04287-0. Epub 2023 Jan 20.

Abstract

A novel BrSCC1 gene for seed coat color was fine mapped within a 41.1-kb interval on chromosome A03 in Brassica rapa and functionally validated by ectopic expression analysis. Yellow seed is a valuable breeding trait that can be potentiality applied for improving seed quality and oil productivity in oilseed Brassica crops. However, only few genes for yellow seed have been identified in B. rapa. We previously identified a minor quantitative trait locus (QTL), qSC3.1, for seed coat color on chromosome A03 in B. rapa. In order to isolate the seed coat color gene, a brown-seeded chromosome segment substitution line, CSSL-38, harboring the qSC3.1, was selected and crossed with the yellow-seeded recurrent parent, a rapid cycling inbred line of B. rapa (RcBr), to construct the secondary F2 population. Metabolite identification suggested that seed coat coloration in CSSL-38 was independent of proanthocyanidins (PAs) accumulation. Genetic analysis revealed that yellow seed was controlled by a single recessive gene, Seed Coat Color 1 (BrSCC1). Utilizing bulked segregant analysis (BSA)-seq and secondary F2 and F2:3 recombinants analysis, BrSCC1 was fine mapped within a 41.1-kb interval. By integrating gene expression profiling, genome sequence comparison, metabolite analysis, and functional validation through ectopic expression in Arabidopsis, the BraA03g040800.3C gene was confirmed to be BrSCC1, which positively correlated with the seed coat coloration. Our study provides a novel gene resource for the genetic improvement of yellow seeds in oilseed B. rapa.

MeSH terms

  • Brassica rapa* / genetics
  • Chromosome Mapping
  • Cloning, Molecular
  • Genes, Plant
  • Seeds / genetics