Demulsification of asphaltene stabilized crude oil emulsions by biodegradable ethylcellulose polymers with varying viscosities

Sci Rep. 2023 Jan 19;13(1):1090. doi: 10.1038/s41598-023-27973-x.

Abstract

Efficient demulsifiers for fast demulsification of asphaltene stabilized crude oil emulsions are currently in high demand. In this work, we evaluated the demulsification potential of ethyl cellulose (EC) demulsifiers with varying viscosities-4 cp, 22 cp, and 100 cp, designated as EC-4, EC-22, and EC-100. Demulsifcation efficiency (DE) of these demulsifiers to remove water from emulsions produced from distilled water, seawater, and different salts (NaCl, MgCl2, and CaCl2) solution were assessed using the bottle test technique at ambient and elevated temperatures (25 °C and 90 °C). The bottle test outcomes showed that EC-4 and EC-22 had better performance at the ambient conditions to demulsify the emulsions formed from distilled water with %DE of 85.71% and 28.57%, respectively, while EC-100 achieved 3.9% water removal owing to its high viscosity which inhibited its adsorption at the oil-water interface. At demulsification temperature (90 °C) under the emulsions from distilled water, the %DE of EC-4, EC-22, and EC-100 was 99.23%, 58.57%, and 42.85%, respectively. Seawater hastened the demulsification activities of these demulsifiers. Also, these demulsifiers demonstrated excellent demulsification in emulsions from various salts. The demulsification performance of the EC-4 demulsifier in the presence of any of these salts was approximately 98% while MgCl2 and CaCl2 accelerated the water/oil separation performance of EC-22 and EC-100 by promoting their diffusion and adsorption at the interface. Viscosity and shear stress measurements corroborated the results obtained from the bottle tests. Injection of EC demulsifiers led to a reduction in the viscosity and shear stress of the formed emulsion. Reduction in the shear stress and viscosity were highest in EC-4 and lowest in EC-100. Optical microscopic images of emulsion injected with EC-4 demulsifier were analyzed at various periods during viscosity measurements. Based on the optical images obtained at different durations, a demulsification mechanism describing the activity of the EC demulsifier was proposed.