Molecular tracers, mass spectral tracers and oxidation of organic aerosols emitted from cooking and fossil fuel burning sources

Sci Total Environ. 2023 Apr 10:868:161635. doi: 10.1016/j.scitotenv.2023.161635. Epub 2023 Jan 16.

Abstract

Secondary organic aerosol (SOA) composes a substantial fraction of atmospheric particles, yet the formation and aging mechanism of SOA remains unclear. Here we investigate the initial oxidation of primary organic aerosol (POA) and further aging of SOA in winter Beijing by using aerosol mass spectrometer (AMS) measurements along with offline molecular tracer analysis. Multilinear engine (ME-2) source apportionment was conducted to capture the characteristic of source-related SOA, and connect them with specific POA. Our results show that urban cooking and fossil fuel burning sources contribute significantly (17 % and 20 %) to total organic aerosol (OA) in winter Beijing. Molecular tracer analysis by two-dimensional gas chromatography-time-of-flight mass spectrometer (GC × GC-ToF-MS) reveals that cooking SOA (CSOA) is produced through both photooxidation and aqueous-phase processing, while less oxidized SOA (LO-SOA) is the photooxidation product of fossil fuel burning OA (FFOA) and may experience aqueous-phase aging to form more-oxidized oxygenated OA (MO-OOA). Furthermore, CHOm/z 69 and CHOm/z 85 are mass spectral tracers indicating the initial photooxidation, while CHO2+ and C2H2O2+ imply further aqueous-phase aging of OA. Tracer analysis indicates that the formation of diketones is involved in the initial photooxidation of POA, while the formation of glyoxal and diacids is involved in the further aqueous-phase aging of SOA.

Keywords: AMS; Aqueous-phase processing; ME-2 analysis; Photooxidation; Secondary organic aerosol.