Fӧrster resonance energy transfer (FRET) between CdSe quantum dots and ABA phosphorus(V) corroles

Spectrochim Acta A Mol Biomol Spectrosc. 2023 Apr 15:291:122345. doi: 10.1016/j.saa.2023.122345. Epub 2023 Jan 11.

Abstract

In this article, highly fluorescent phosphorus(V) corrole was synthesised which was then combined with CdSe quantum dots (QDs) in order to study Förster resonance energy transfer (FRET) mechanism between CdSe QDs (donor) and phosphorus corrole (acceptor). Spectral overlap between QD's emission profile and corrole's absorption profile was found to be significant enough to result into Förster resonance energy transfer (FRET). The UV-vis spectrum experienced increase in the absorption bands on addition of phosphorus corrole to CdSe QDs suggesting QD-corrole conjugation. In the steady state fluorescence measurements, emission spectrum observed quenching in the fluorescence intensity of prepared CdSe QDs on addition of phosphorus corrole. Likewise, in case of time-resolved fluorescence measurements it was noticed that the CdSe QD's lifetime was greatly quenched by the presence of a corrole acceptor. Stern-Volmer plot was made to show quenching in this case was dynamic in nature. Based on the results of UV-vis, steady state and time-resolved fluorescence measurements the plausible mechanism behind such observations is considered to be FRET.