Support Diminution Design for Layered Manufacturing of Manifold Surface Based on Variable Orientation Tracking

3D Print Addit Manuf. 2021 Jun 1;8(3):149-167. doi: 10.1089/3dp.2020.0203. Epub 2021 Jun 2.

Abstract

This article proposes a support diminution design method for layered manufacturing of manifold surface based on variable orientation tracking (VOT). We aim at reducing the external support or upholders to a minimum with maximum possibility theoretically to save material and diminish material stripping effect (MSE), thereby improving the bilateral surface precision either exterior or interior. The cosmic gravity effect criterion is first used to extract surface need support from manifold surface with various materials by considering the balance force involving material characteristics and inclination angle. In the light of this criterion theory, varying the substrate normal orientation (SNO), namely workbench, for each layer in printing coordinate system, may break the balance between gravity and its equilibrium force. Therefore, the optimal SNO can be rigorously calculated using mathematical harmonic analysis among the continuous domain. To serve for the multidegree of freedom (DOF) on account of SNO, a reconfigurable VOT robot with six-axis DOF is developed for 3D printing (3DP). The matched servo controller is successfully implemented to accurate tracking of both orientation and Cartesian coordinates, using forward kinematic chains as well as reverse kinematic tracking. What is more, the end-effector (extruder) is holding perpendicular to the substrate workbench. The physical experiment that takes human external ear auricle, for example, using a layer-based process is implemented via VOT. The MSE due to supporting material can be clearly observed and diminished using an optical microscope. The stripped material from external support via diminution design can be evaluated quantitatively by electronic weighting balance. All of which indicate the findings that external support in 3DP can be virtually reckoned and diminished using VOT rather than the so-called build orientation traversal method. The VOT method upon which we touched can be widely applied to various layered manufacturing of accurate structure, for instance, cantilever, sandwich, and scaffolds in the occasion needing precise curtailment of outer support multimaterial.

Keywords: layered manufacturing; material stripping effect (MSE); reverse kinematic tracking; support diminution design; variable orientation tracking (VOT).