A laboratory platform for studying rotational dust flows in a plasma crystal irradiated by a 10 keV electron beam

Sci Rep. 2023 Jan 18;13(1):940. doi: 10.1038/s41598-023-28152-8.

Abstract

A novel laboratory platform has been designed and built for the irradiation of a plasma crystal (PC) with an electron beam (e-beam) having an energy around 10 keV and a current of tens of milliamperes. The pulsed e-beam collimated to a few millimeter-size spot is aimed at a crystal made of dust particles levitated in a radio-frequency (RF) plasma. The platform consists of three vacuum chambers connected in-line, each with different utility: one for generating free electrons in a pulsed hollow-anode Penning discharge, another for the extraction and acceleration of electrons at [Formula: see text] kV and for focusing the e-beam in the magnetic field of a pair of circular coils, and the last one for producing PCs above a RF-driven electrode. The main challenge is to obtain both a stable e-beam and PC by insuring appropriate gas pressures, given that the e-beam is formed in high vacuum ([Formula: see text] Torr), while the PC is produced at much higher pressures ([Formula: see text] Torr). The main diagnostics include a high speed camera, a Faraday cup and a Langmuir probe. Two applications concerned with the creation of a pair of dust flow vortices and the rotation of a PC by the drag force of the e-beam acting on the strongly coupled dust particles are presented. The dust flow can become turbulent as demonstrated by the energy spectrum, featuring vortices at different space scales.