Preparation of NaNbO3 microcube with abundant oxygen vacancies and its high photocatalytic N2 fixation activity in the help of Pt nanoparticles

J Colloid Interface Sci. 2023 Apr 15:636:480-491. doi: 10.1016/j.jcis.2023.01.049. Epub 2023 Jan 11.

Abstract

In this study, the photocatalytic N2 immobilization performance of NaNbO3 is enhanced via oxygen vacancy introduction and Pt loading. The designed Pt-loaded NaNbO3 with rich oxygen defects (Pt/O-NaNbO3) is synthesized by combining ion-exchange and photodeposition methods. Characterization result indicates that the O-NaNbO3 has hollow microcube morphology and higher surface area than NaNbO3. The introduced oxygen defects greatly affect the energy band structure. The band gap is slightly narrowed and the conduction band is raised, allowing O-NaNbO3 to generate electrons with strong reducibility. Moreover, the oxygen defects reduced the work function of NaNbO3, leading to increased charge separation in the bulk phase. The loaded Pt nanoparticles can further increase the surface charge separation via the formed Schottky barriers between Pt and O-NaNbO3, which was thought to be the primary cause of the increased photocatalytic activity. Additionally, the oxygen vacancies and metal Pt also contribute to the adsorption and activation of N2. Under the combined effect of the above changes, Pt/O-NaNbO3 presents much higher photoactivity than NaNbO3. The optimized NH3 production rate reaches 293.3 μmol/L g-1h-1 under simulated solar light, which is approximately 2.2 and 20.2 times higher than that of O-NaNbO3 and NaNbO3, respectively. This research offers a successful illustration of how to improve photocatalytic N2 fixation and may shed some light on how to design and construct efficient photocatalysts by combining several techniques.

Keywords: Charge separation; NaNbO(3); Oxygen vacancy; Photocatalytic N(2) fixation; Pt.