Acute toxicity of single and combined rare earth element exposures towards Daphnia similis

Ecotoxicol Environ Saf. 2023 Feb:251:114538. doi: 10.1016/j.ecoenv.2023.114538. Epub 2023 Jan 16.

Abstract

The increasing use of Rare Earth Elements (REE) in emerging technologies, medicine and agriculture has led to chronic aquatic compartment contamination. In this context, this aimed to evaluate the acute toxic effects of lanthanum (La), neodymium (Nd) and samarium (Sm), as both single and binary and ternary mixtures on the survival of the microcrustacean Daphnia similis. A metal solution medium with (MS) and without EDTA and cyanocobalamin (MSq) as chelators was employed as the assay dilution water to assess REE bioavailability effects. In the single exposure experiments, toxicity in the MS medium decreased following the order La > Sm > Nd, while the opposite was noted for the MSq medium, which was also more toxic than the MS medium. The highest MS toxicity was observed for the binary Nd + La (1:1) mixture (EC50 48 h of 11.57 ± 1.22 mg.L-1) and the lowest, in the ternary Sm + La + Nd (2:2:1) mixture (EC50 48 h 41.48 ± 1.40 mg.L-1). The highest toxicity in the MSq medium was observed in the single assays and in the binary Sm + Nd (1:1) mixture (EC50 48 h 10.60 ± 1.57 mg.L-1), and the lowest, in the ternary Sm + La + Nd (1:2:2) mixture (EC50 48 h 36.76 ± 1.54 mg.L-1). Concerning the MS medium, 75 % of interactions were additive, 19 % antagonistic, and 6 % synergistic. In the MSq medium, 56 % of interactions were synergistic and 44 % additive. The higher toxicity observed in the MSq medium indicates that the absence of chelators can increase the concentrations of more toxic free ions, suggesting that the MS medium should be avoided in REE assays. Additive interactions were observed in greater or equivalent amounts in both media and were independent of elemental mixture ratios. These findings improve the understanding of environmental REE effects, contributing to the establishment of future guidelines and ecological risk calculations.

Keywords: Aquatic ecotoxicology; Invertebrates; Lanthanides; Mixtures; Toxic effects.

MeSH terms

  • Animals
  • Chelating Agents / pharmacology
  • Daphnia*
  • Lanthanum / toxicity
  • Metals, Rare Earth* / toxicity
  • Neodymium / pharmacology
  • Samarium

Substances

  • Metals, Rare Earth
  • Samarium
  • Lanthanum
  • Neodymium
  • Chelating Agents