Nitrogen-Doped and Sulfonated Carbon Dots as a Multifunctional Additive to Realize Highly Reversible Aqueous Zinc-Ion Batteries

Small. 2023 Aug;19(31):e2205558. doi: 10.1002/smll.202205558. Epub 2023 Jan 17.

Abstract

Aqueous zinc-ion batteries (ZIBs) using the Zn metal anode have been considered as one of the next-generation commercial batteries with high security, robust capacity, and low price. However, parasitic reactions, notorious dendrites and limited lifespan still hamper their practical applications. Herein, an eco-friendly nitrogen-doped and sulfonated carbon dots (NSCDs) is designed as a multifunctional additive for the cheap aqueous ZnSO4 electrolyte, which can overcome the above difficulties effectively. The abundant polar groups (-COOH, -OH, -NH2 , and -SO3 H) on the CDs surfaces can regulate the solvation structure of Zn2+ through decreasing the coordinated active H2 O molecules, and thus redistribute Zn2+ deposition to avoid side reactions. Some of the negatively charged NSCDs are adsorbed on Zn anode surface to isolate the H2 O/SO4 2- corrosion through the electrostatic shielding effect. The synergistic effect of the doped nitrogen species and the surface sulfonic groups can induce a uniform electrolyte flux and a homogeneous Zn plating with a (002) texture. As a result, the excellent cycle life (4000 h) and Coulombic efficiency (99.5%) of the optimized ZIBs are realized in typical ZnSO4 electrolytes with only 0.1 mg mL-1 of NSCDs additive.

Keywords: additive; carbon dots; electrolytes; multifunctional; zinc-ion batteries.