The conformational behavior of N‑ethylformamide as observed by rotational spectroscopy and quantum chemistry

Spectrochim Acta A Mol Biomol Spectrosc. 2023 Apr 15:291:122353. doi: 10.1016/j.saa.2023.122353. Epub 2023 Jan 10.

Abstract

A peptide linkage (CO)NH containing molecule, N-ethylformamide, was investigated by rotational spectroscopy in order to determine the molecular constants of its highest-energy conformer, cis-ac. Its rotational spectrum was observed in two different frequency ranges, in the 4-26 GHz frequency region using a Fourier transform microwave spectrometer and at millimeter wave frequencies between 75 and 116 GHz, employing a broadband high-resolution rotational spectrometer. The measurements at low frequencies allowed to resolve the hyperfine structure components due to nitrogen nuclear quadrupole coupling while the data at higher frequencies provided spectroscopic information about high order centrifugal effects. From a merged fit using all the observational data we have determined a total of thirteen molecular constants that provide a more accurate spectral modelling of the cis-ac conformer and serves a basis for their astronomical search. We have also observed spectra of five singly substituted isotopologues for the cis-ac conformer, three 13C and one for each of 15N and the deuterated species on the N-D position, from which we derived a partial r0 structure, in fair agreement with an ab initio result. In addition, the rotational transitions of the deuterated species of the most stable trans-sc conformer were observed and assigned and three rotational, five centrifugal distortion constants and nuclear quadrupole coupling constants of the nitrogen and deuterium nuclei were determined.

Keywords: Conformational analysis; FTMW spectroscopy; Molecular structure; N-ethylformamide; Rotational spectroscopy.