Galyean appreciation club review: a holistic perspective of the societal relevance of beef production and its impacts on climate change

J Anim Sci. 2023 Jan 3:101:skad024. doi: 10.1093/jas/skad024.

Abstract

This article provides a science-based, data-driven perspective on the relevance of the beef herd in the U.S. to our society and greenhouse gas (GHG) contribution to climate change. Cattle operations are subject to criticism for their environmental burden, often based on incomplete information disseminated about their social, economic, nutritional, and ecological benefits and detriments. The 2019 data published by the U.S. Environmental Protection Agency reported that U.S. beef cattle emitted 22.6% of the total agricultural emissions, representing about 2.2% of the total anthropogenic emissions of CO2 equivalent (CO2e). Simulations from a computer model developed to address global energy and climate challenges, set to use extreme improvements in livestock and crop production systems, indicated a potential reduction in global CO2e emissions of 4.6% but without significant enhancement in the temperature change by 2030. There are many natural and anthropogenic sources of CH4 emissions. Contrary to the increased contribution of peatlands and water reservoirs to atmospheric CO2e, the steady decrease in the U.S. cattle population is estimated to have reduced its methane (CH4) emissions by about 30% from 1975 to 2021. This CH4 emission deacceleration of 2.46 Mt CO2e/yr2 might be even more significant than reported. Many opportunities exist to mitigate CH4 emissions of beef production, leading to a realistic prospect of a 5% to 15% reduction in the short term after considering the overlapping impacts of combined strategies. Reduction strategies include feeding synthetic chemicals that inactivate the methyl-coenzyme M reductase (the enzyme that catalyzes the last step of methanogenesis in the rumen), red seaweed or algae extracts, ionophore antibiotics, phytochemicals (e.g., condensed tannins and essential oils), and other nutritional manipulations. The proposed net-zero concept might not solve the global warming problem because it will only balance future anthropogenic GHG emissions with anthropogenic removals, leaving global warming on a standby state. Recommendations for consuming red meat products should consider human nutrition, health, and disease and remain independent of controversial evidence of causational relationships with perceived negative environmental impacts of beef production that are not based on scientific data.

Keywords: agriculture; animal science; environment; greenhouse gas; resilience; sustainability.

Plain language summary

This article aims to provide data-driven information about the relevance of the U.S. beef cattle herd to our society and its greenhouse gas (GHG) contribution to climate change. The Environmental Protection Agency reported that U.S. beef cattle emitted 22.6% of the total agricultural emissions, representing about 2.2% of the total anthropogenic emissions of carbon dioxide equivalent (CO2e). Although the GHG contribution of the U.S. beef cattle production is small, there are many opportunities to reduce enteric methane emissions from beef cattle, with realistic estimates of a 5% to 15% reduction. However, net-zero emissions will be challenging to achieve for beef production. Considering the relatively minor contribution of beef cattle production to GHG emissions, other sources with a greater contribution to GHG emissions should be a much higher priority for mitigation as they would have a more substantial impact on slowing global warming. Recommendations by health professionals for consuming red meat products should consider human nutrition, health, and disease and remain independent of perceived negative environmental impacts of beef production that are not based on scientific data.

MeSH terms

  • Animal Husbandry / methods
  • Animals
  • Cattle
  • Climate Change*
  • Environment
  • Greenhouse Effect
  • Greenhouse Gases*
  • Humans
  • Methane / analysis
  • Nutritional Status

Substances

  • Greenhouse Gases
  • Methane