Electrochemical sensor based on a ZnO-doped graphitized carbon for the electrocatalytic detection of the antibiotic hydroxychloroquine. Application: tap water and human urine

J Appl Electrochem. 2023;53(6):1279-1294. doi: 10.1007/s10800-022-01835-2. Epub 2023 Jan 7.

Abstract

Abstract: In December 2019, the world experienced a new coronavirus, SARS-CoV-2, causing coronavirus disease 2019 originating from Wuhan.The virus has crossed national borders and now affects more than 200 countries and territories. Hydroxychloroquine has been considered as a drug capable of treating COVID-19. The objective of this work is to establish a simple platform for electrocatalytic detection of hydroxychloroquine in human urine samples and pharmaceutical samples (tablets) using a ZnO@CPE sensor constructed by simple and inexpensive hydrothermal methods using a square wave voltammetry method. The best results are obtained in a PBS electrolyte with irreversible behavior of the hydroxychloroquine complement and controlled by diffusion coupled with absorption phenomena. The ZnO@CPE shifts the oxidation potential of hydroxychloroquine with the formation of a single very intense peak at the position of Epa = 0.5 V/(vs Ag/AgCl) with a shift is ΔEp = 0.1 V(vs Ag/AgCl) compared to the unmodified electrode. The obtained ZnO@CPE hybrid nanocomposite was characterized by different techniques and showed excellent electrocatalytic activity and higher active surface area compared to the bare carbon paste electrode. Under the optimized experimental conditions, the ZnO@CPE sensor showed good analytical performance for the determination of trace amounts of hydroxychloroquine, a wide linearity range from 10-3 M to 0.8 × 10-6 M with a very low detection limit in the range of 1.33 × 10-7 M, satisfactory selectivity, acceptable repeatability and reproducibility. The calculated recovery and coefficient of variation for the two samples analyzed are very satisfactory, ranging from 97.6 to 102% and 1.2 to 2.3% respectively. The proposed applied method and the fabricated sensor offer the possibility to analyze traces of hydroxychloroquine in real human urine and water samples.

Graphical abstract: Strategy for the electro-oxidation reaction of hydroxychloroquine on the electro-catalytic surface of the ZnO@Carbon graphite electrode and real-time detection of hydroxychloroquine.

Keywords: Composite electrode; Electro-oxidation; Electrochemical studies; Hydroxychloroquine; Sensor.