Lossless Compressed Sensing of Photon Counts for Fast Diffuse Correlation Spectroscopy

IEEE Access. 2022:10:129754-129762. doi: 10.1109/access.2022.3228439. Epub 2022 Dec 12.

Abstract

Diffuse Correlation Spectroscopy (DCS), a noninvasive optical technique, measures deep tissue blood flow using avalanche photon counting modules and data acquisition devices such as FPGAs or correlator boards. Conventional DCS instruments use in-processor counter modules that consume 32 bits/channel which is inefficient for low-photon budget situations prevalent in diffuse optics. Scaling these photon counters for large-scale imaging applications is difficult due to bandwidth and processing time considerations. Here, we introduce a new, lossless compressed sensing approach for fast and efficient detection of photon counts. The compressed DCS method uses an array of binary-coded-decimal counters to record photon counts from 8 channels simultaneously as a single 32-bit number. We validate the compressed DCS approach by comparisons with conventional DCS in experiments on tissue simulating phantoms and in-vivo arm cuff occlusion. Lossless compressed DCS was implemented with 87.5% compression efficiency. In tissue simulating phantoms, it was able to accurately estimate a tissue blood flow index, with no statistically significant difference compared to conventional DCS. Compressed DCS also recorded blood flow in vivo, in human forearm, with signal-to-noise ratio and dynamic range comparable to conventional DCS. Lossless 87.5% efficient compressed sensing counting of photon counts meets and exceeds benchmarks set by conventional DCS systems, offering a low-cost alternative for fast (~100 Hz) deep tissue blood flow measurement with optics.

Keywords: Biomedical computing; biophotonics; data compression; diffuse correlation spectroscopy; diffuse optics; optoelectronic sensors; photon counting.