Computational Exploration of Anti-cancer Potential of Flavonoids against Cyclin-Dependent Kinase 8: An In Silico Molecular Docking and Dynamic Approach

ACS Omega. 2022 Dec 21;8(1):391-409. doi: 10.1021/acsomega.2c04837. eCollection 2023 Jan 10.

Abstract

Over the centuries, cancer has been considered one of the significant health threats. It holds the position in the list of deadliest diseases over the globe. In women, breast cancer is the most common among many cancers and is the second most common cancer all over the world, while lung cancer is the first. Cyclin-dependent kinase 8 (CDK8) has been identified as a critical oncogenic driver that is found in breast cancer and associated with tumor progression. Flavonoids were virtually screened against CDK8 using molecular docking, drug-likeness, ADMET prediction, and a molecular dynamics (MD) simulation approach to determine the potential flavonoid structure against CDK8. The results indicated that ZINC000005854718 showed the highest negative binding affinity of -10.7 kcal/mol with the targeted protein and passed all the drug-likeness parameters. Performed molecular dynamics simulation showed that docked complex systems have good conformational stability over 100 ns in different temperatures (298, 300, 305, 310, and 320 K). The comparison between calculated binding free energy via MM/PB(GB)SA methods and binding affinity calculated via molecular docking suggested tight binding of ZINC000005854718 with targeted protein. The results concluded that ZINC000005854718 has drug-like properties with tight and stable binding with the targeted protein.