Injectable Bone Cement Reinforced with Gold Nanodots Decorated rGO-Hydroxyapatite Nanocomposites, Augment Bone Regeneration

Small. 2023 Apr;19(14):e2204637. doi: 10.1002/smll.202204637. Epub 2023 Jan 15.

Abstract

Interest in the development of new generation injectable bone cements having appropriate mechanical properties, biodegradability, and bioactivity has been rekindled with the advent of nanoscience. Injectable bone cements made with calcium sulfate (CS) are of significant interest, owing to its compatibility and optimal self-setting property. Its rapid resorption rate, lack of bioactivity, and poor mechanical strength serve as a deterrent for its wide application. Herein, a significantly improved CS-based injectable bone cement (modified calcium sulfate termed as CSmod ), reinforced with various concentrations (0-15%) of a conductive nanocomposite containing gold nanodots and nanohydroxyapatite decorated reduced graphene oxide (rGO) sheets (AuHp@rGO), and functionalized with vancomycin, is presented. The piezo-responsive cement exhibits favorable injectability and setting times, along with improved mechanical properties. The antimicrobial, osteoinductive, and osteoconductive properties of the CSmod cement are confirmed using appropriate in vitro studies. There is an upregulation of the paracrine signaling mediated crosstalk between mesenchymal stem cells and human umbilical vein endothelial cells seeded on these cements. The ability of CSmod to induce endothelial cell recruitment and augment bone regeneration is evidenced in relevant rat models. The results imply that the multipronged activity exhibited by the novel-CSmod cement would be beneficial for bone repair.

Keywords: antimicrobial; bone cement; calcium sulfate; gold; nanohydroxyapatite; piezoelectric.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bone Cements* / pharmacology
  • Bone Regeneration
  • Calcium Phosphates
  • Calcium Sulfate
  • Compressive Strength
  • Durapatite
  • Endothelial Cells
  • Gold
  • Humans
  • Nanocomposites*
  • Rats

Substances

  • Bone Cements
  • Durapatite
  • graphene oxide
  • Gold
  • Calcium Sulfate
  • Calcium Phosphates