Whole lung proteome of an acute epithelial injury mouse model in comparison to spatially resolved proteomes

Proteomics. 2023 May;23(10):e2100414. doi: 10.1002/pmic.202100414. Epub 2023 Jan 26.

Abstract

Epithelial injury is one of the major drivers of acute pulmonary diseases. Recurring injury followed by aberrant repair is considered as the primary cause of chronic lung diseases, such as idiopathic pulmonary fibrosis (IPF). Preclinical in vivo models allow studying early disease-driving mechanisms like the recently established adeno-associated virus-diphtheria toxin receptor (AAV-DTR) mouse model of acute epithelial lung injury, which utilises AAV mediated expression of the human DTR. We performed quantitative proteomics of homogenised lung samples from this model and compared the results to spatially resolved proteomics data of epithelial cell regions from the same animals. In whole lung tissue proteins involved in cGAS-STING and interferon pathways, proliferation, DNA replication and the composition of the provisional extracellular matrix were upregulated upon injury. Besides epithelial cell markers SP-A, SP-C and Scgb1a1, proteins involved in cilium assembly, lipid metabolism and redox pathways were among downregulated proteins. Comparison of the bulk to spatially resolved proteomics data revealed a large overlap of protein changes and striking differences. Together our study underpins the broad usability of bulk proteomics and pinpoints to the benefit of sophisticated proteomic analyses of specific tissue regions or single cell types.

Keywords: AAV; DTR; TMT; diphtheria toxin; epithelial lung injury.

MeSH terms

  • Acute Lung Injury*
  • Animals
  • Humans
  • Idiopathic Pulmonary Fibrosis* / genetics
  • Idiopathic Pulmonary Fibrosis* / metabolism
  • Lung / metabolism
  • Mice
  • Proteome / metabolism
  • Proteomics / methods

Substances

  • Proteome