Loss of epigenetic information as a cause of mammalian aging

Cell. 2023 Jan 19;186(2):305-326.e27. doi: 10.1016/j.cell.2022.12.027. Epub 2023 Jan 12.

Abstract

All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation. These data are consistent with the information theory of aging, which states that a loss of epigenetic information is a reversible cause of aging.

Keywords: DNA damage; RCM; aging; chromatin; epigenetic clock; epigenetic reprogramming; relocalization of chromatin modifier; senescence.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging* / genetics
  • Animals
  • DNA Methylation
  • Epigenesis, Genetic*
  • Epigenome
  • Mammals / genetics
  • Nucleoproteins
  • Saccharomyces cerevisiae / genetics

Substances

  • Nucleoproteins