Integrated Network Pharmacology and Gut Microbiota Analysis to Explore the Mechanism of Sijunzi Decoction Involved in Alleviating Airway Inflammation in a Mouse Model of Asthma

Evid Based Complement Alternat Med. 2023 Jan 3:2023:1130893. doi: 10.1155/2023/1130893. eCollection 2023.

Abstract

Background: Asthma is a chronic inflammatory disease of the airways with recurrent attacks, which seriously affects the patients' quality of life and even threatens their lives. The disease can even threaten the lives of patients. Sijunzi decoction (SJZD), a classical Chinese medicine formula with a long history of administration, is a basic formula used for the treatment of asthma and demonstrates remarkable efficacy. However, the underlying mechanism has not been elucidated.

Materials and methods: We aimed to integrate network pharmacology and intestinal flora sequencing analysis to study the mechanism of SJZD in the treatment of allergic asthmatic mice. The active compounds of SJZD and their asthma-related targets were predicted by various databases. We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to identify potentially relevant pathways for target genes. Furthermore, the active compound-target and target-signaling pathway network maps were constructed by using Cytoscape 3.8.2. These results were combined with those of the intestinal flora sequencing analysis to study the influence of SJZD on airway inflammation in allergic asthmatic mice.

Result: We obtained 137 active compounds from SJZD and associated them with 1445 asthma-related targets acquired from the databases. A total of 109 common targets were identified. We visualized active compound-target and target-signaling pathway network maps. The pathological analysis and inflammation score results suggested that SJZD could alleviate airway inflammation in asthmatic mice. Sequencing analysis of intestinal flora showed that SJZD could increase the relevant abundance of beneficial bacterial genus and maintain the balance of the intestinal flora. The core toll-like receptor (TLR) signaling pathway was identified based on network pharmacology analysis, and the important role TLRs play in intestinal flora and organismal immunity was also recognized. The analysis of the correlation between environmental factors and intestinal flora revealed that beneficial bacterial genera were negatively correlated with TLR2 and positively correlated with the TLR7 expression. Furthermore, they were positively correlated with IFN-γ and IL-10 levels and negatively correlated with IL-4 and IL-17 levels.

Conclusion: SJZD alleviated the airway inflammation state in asthmatic mice. The findings suggest that increasing the relevant abundance of beneficial intestinal bacteria in mice with asthma, regulating intestinal flora, interfering with the level of TLR2 and TLR7 expression to adjust the secretion of inflammatory factors, and alleviating asthmatic airway inflammation may be the possible mechanism involved in the treatment of asthma by SJZD, providing a basis for further studies on SJZD.