Structured Reactors Based on 3D Fe/SiC Catalysts: Understanding the Effects of Mixing

Ind Eng Chem Res. 2022 Aug 17;61(32):11678-11690. doi: 10.1021/acs.iecr.2c01611. Epub 2022 Aug 8.

Abstract

The application of structured reactors provides a number of advantages in chemical processes. In this paper, two different three-dimensional (3D) Fe/SiC catalysts with a square cell geometry have been manufactured by Robocasting: monoliths (D = 14 and H = 15 mm) and meshes (D = 24 and H = 2 mm) and studied in the catalytic phenol oxidation by hydrogen peroxide (H2O2) for the sustainable production of dihydroxybenzenes (DHBZ). The fluid dynamics, catalytic performance, reaction rates, external mass transport limitation, and catalyst stability have been compared in three different reactors, monolithic fixed-bed reactor, multimesh fixed-bed reactor, and monolithic stirrer reactor, at selected operating conditions. The results show that the mechanical stirring of the 3D Fe/SiC monoliths avoids the external mass transfer limitation caused by the presence of oxygen bubbles in the channels (produced from the HO x · species in autoscavenging radical reactions). In addition, the backmixing has a positive effect on the efficient consumption of H2O2 but an adverse effect on the phenol selectivity to DHBZ since they are overoxidized to tar products at longer contact times. On the other hand, the wall porosity, and not the backmixing, affects the susceptibility of the 3D Fe/SiC catalyst to the Fe leaching, as occurs in the mesh structures. In conclusion, the monoliths operating under plug-flow and external mass transfer limitation in the monolithic fixed-bed reactor (MFB) provide an outstanding phenol selectivity to DHBZ and catalyst stability.