Functional and regulatory impact of chimeric RNAs in human normal and cancer cells

Wiley Interdiscip Rev RNA. 2023 Sep-Oct;14(5):e1777. doi: 10.1002/wrna.1777. Epub 2023 Jan 12.

Abstract

Fusions of two genes can lead to the generation of chimeric RNAs, which may have a distinct functional role from their original molecules. Chimeric RNAs could encode novel functional proteins or serve as novel long noncoding RNAs (lncRNAs). The appearance of chimeric RNAs in a cell could help to generate new functionality and phenotypic diversity that might facilitate this cell to survive against new environmental stress. Several recent studies have demonstrated the functional roles of various chimeric RNAs in cancer progression and are considered as biomarkers for cancer diagnosis and sometimes even drug targets. Further, the growing evidence demonstrated the potential functional association of chimeric RNAs with cancer heterogeneity and drug resistance cancer evolution. Recent studies highlighted that chimeric RNAs also have functional potentiality in normal physiological processes. Several functionally potential chimeric RNAs were discovered in human cancer and normal cells in the last two decades. This could indicate that chimeric RNAs are the hidden layer of the human transcriptome that should be explored from the functional insights to better understand the functional evolution of the genome and disease development that could facilitate clinical practice improvements. This review summarizes the current knowledge of chimeric RNAs and highlights their functional, regulatory, and evolutionary impact on different cancers and normal physiological processes. Further, we will discuss the potential functional roles of a recently discovered novel class of chimeric RNAs named sense-antisense/cross-strand chimeric RNAs generated by the fusion of the bi-directional transcripts of the same gene. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.

Keywords: cancer; chimeric RNA; drug-resistance; precision medicine; sense-antisense chimeric RNA.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomarkers
  • Humans
  • Neoplasms* / genetics
  • RNA / genetics
  • RNA, Long Noncoding* / genetics
  • Transcriptome

Substances

  • RNA
  • Biomarkers
  • RNA, Long Noncoding