γδ T cells are effectors of immunotherapy in cancers with HLA class I defects

Nature. 2023 Jan;613(7945):743-750. doi: 10.1038/s41586-022-05593-1. Epub 2023 Jan 11.

Abstract

DNA mismatch repair-deficient (MMR-d) cancers present an abundance of neoantigens that is thought to explain their exceptional responsiveness to immune checkpoint blockade (ICB)1,2. Here, in contrast to other cancer types3-5, we observed that 20 out of 21 (95%) MMR-d cancers with genomic inactivation of β2-microglobulin (encoded by B2M) retained responsiveness to ICB, suggesting the involvement of immune effector cells other than CD8+ T cells in this context. We next identified a strong association between B2M inactivation and increased infiltration by γδ T cells in MMR-d cancers. These γδ T cells mainly comprised the Vδ1 and Vδ3 subsets, and expressed high levels of PD-1, other activation markers, including cytotoxic molecules, and a broad repertoire of killer-cell immunoglobulin-like receptors. In vitro, PD-1+ γδ T cells that were isolated from MMR-d colon cancers exhibited enhanced reactivity to human leukocyte antigen (HLA)-class-I-negative MMR-d colon cancer cell lines and B2M-knockout patient-derived tumour organoids compared with antigen-presentation-proficient cells. By comparing paired tumour samples from patients with MMR-d colon cancer that were obtained before and after dual PD-1 and CTLA-4 blockade, we found that immune checkpoint blockade substantially increased the frequency of γδ T cells in B2M-deficient cancers. Taken together, these data indicate that γδ T cells contribute to the response to immune checkpoint blockade in patients with HLA-class-I-negative MMR-d colon cancers, and underline the potential of γδ T cells in cancer immunotherapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antigen Presentation
  • Cell Line, Tumor
  • Colonic Neoplasms* / drug therapy
  • Colonic Neoplasms* / genetics
  • Colonic Neoplasms* / immunology
  • Colonic Neoplasms* / therapy
  • DNA Mismatch Repair / genetics
  • Genes, MHC Class I* / genetics
  • Histocompatibility Antigens Class I* / genetics
  • Histocompatibility Antigens Class I* / immunology
  • Humans
  • Immune Checkpoint Inhibitors* / pharmacology
  • Immune Checkpoint Inhibitors* / therapeutic use
  • Immunotherapy*
  • Organoids
  • Receptors, Antigen, T-Cell, gamma-delta* / immunology
  • Receptors, KIR
  • T-Lymphocytes* / immunology
  • beta 2-Microglobulin / deficiency
  • beta 2-Microglobulin / genetics

Substances

  • Histocompatibility Antigens Class I
  • Immune Checkpoint Inhibitors
  • Receptors, Antigen, T-Cell, gamma-delta
  • beta 2-Microglobulin
  • PDCD1 protein, human
  • Receptors, KIR
  • CTLA4 protein, human

Supplementary concepts

  • Turcot syndrome