In vitro anti-Leishmania activity of new isomeric cobalt(II)complexes and in silico insights: Mitochondria impairment and apoptosis-like cell death of the parasite

J Inorg Biochem. 2023 Mar:240:112088. doi: 10.1016/j.jinorgbio.2022.112088. Epub 2022 Dec 9.

Abstract

The synthesis, physico-chemical characterization and in vitro antiproliferative activity against the promastigote form of Leishmania amazonensis of two new cobalt(II) coordination compounds (i.e. [Co(HL1)Cl2]0.4,2H2O (1) and [Co(HL2)(Cl)(CH3OH)](ClO4).2H2O (2)) are reported, where HL1 = 4-{3-[bis(pyridin-2-ylmethyl)amino]-2-hydroxypropoxy}-2H-chromen-2-one and HL2 = 7-{3-[bis(pyridin-2-ylmethyl)amino]-2-hydroxypropoxy}-2H-chromen-2-one. X-ray diffraction studies were performed for complex (2) and the structure of complex (1) was built through Density Functional Theory (DFT) calculations. Complex (1) presented no cytotoxicity to LLC-MK2, but complex (2) was toxic. IC50 against promastigotes of L. amazonensis for complex (1) were 4.90 (24 h), 3.50 (48 h) and 3. 80 μmol L-1 (72 h), and for complex (2) were 2.09, 4.20 and 2.80 μmol L-1, respectively. Due to the high toxicity presented by complex (2) against LLC-MK2 host cells, mechanistic studies, to shed light on the probable mode of leishmanicidal activity, were carried out only for the non-cytotoxic complex. Complex (1) was able to elevate mitochondrial membrane potential of the parasites after treatment. Transmission electron microscopy revealed typical apoptotic condensation of chromatin, altered kinetoplast and mitochondria structures, suggesting that apoptosis-like cell death of the protozoa is probably mediated by an apoptotic mechanism associated with mitochondrial dysfunction (intrinsic pathway). Molecular docking studies with complex (1) upon protein tyrosine phosphatase (LmPRL-1) suggests a plausible positive complex anchoring mainly by hydrophobic and hydrogen bond forces close to the enzyme's catalytic site. These promising results for complex 1 will prompt future investigations against amastigote form of L. amazonensis.

Keywords: Apoptotic mechanism; Cobalt(II) complexes; Leishmania amazonensis; Leishmanicidal activity; Molecular docking; X-ray.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Antiprotozoal Agents* / chemistry
  • Apoptosis
  • Cobalt / pharmacology
  • Leishmania*
  • Mitochondria
  • Molecular Docking Simulation
  • Parasites*

Substances

  • Cobalt
  • Antiprotozoal Agents