Navitoclax improves acute-on-chronic liver failure by eliminating senescent cells in mice

Hepatol Res. 2023 May;53(5):460-472. doi: 10.1111/hepr.13879. Epub 2023 Jan 23.

Abstract

Aim: Acute-on-chronic liver failure (ACLF), a disease with poor prognosis, is reportedly caused by cellular senescence due to mitochondrial dysfunction. In this study, we described and analyzed the underlying mechanism of a novel approach for ACLF using ABT263/navitoclax (Navi) that selectively eliminates senescent cells.

Methods: Irradiation-induced senescent hepatocytes were used for in vitro evaluation of the effects of Navi on ACLF (n = 6 for each group). Lipopolysaccharide- and carbon tetrachloride-induced ACLF mouse model was used for in vivo evaluation of the effects of Navi administration compared with the control using one-way or two-way analysis of variance, followed by Student's t-test or Kruskal-Wallis test. The effects on the senescence-associated secretory phenotype (n = 8 for each group) and mitochondrial functions, including adenosine triphosphate concentration and membrane potential (n = 8 for each group), were investigated using real-time polymerase chain reaction, immunohistochemistry, and enzyme analysis.

Results: Navi eliminated irradiation-induced senescent hepatocytes in vitro, leading to non-senescent hepatocyte proliferation. Navi eliminated senescent cells in the liver in vivo, resulting in downregulation of mRNA expression of senescence-associated secretory phenotype factors, a decrease of liver enzymes, and upregulated proliferation of non-senescent cells in the liver. Regarding mitochondrial functional assessment in the liver, adenosine triphosphate concentration and membrane potential were upregulated after Navi administration in vitro and in vivo.

Conclusions: Navi may ameliorate ACLF damage by eliminating senescent cells in the liver, downregulating senescence-associated secretory phenotype factors, and upregulating mitochondrial functions. We believe that this novel approach using Navi will pave the way for ACLF treatment.

Keywords: acute-on-chronic liver failure; mitochondrial function; navitoclax; senescence-associated secretory phenotype.