Acteoside from Conandron ramondioides Reduces Microcystin-LR Cytotoxicity by Inhibiting Intracellular Uptake Mediated by OATP1B3

Planta Med. 2023 May;89(6):616-623. doi: 10.1055/a-1978-8768. Epub 2023 Jan 10.

Abstract

The hepatotoxin microcystin-LR is a strong inhibitor of serine/threonine protein phosphatase (PP) 1 and PP2A. The onset of its cytotoxicity depends on its selective uptake via the hepatocyte uptake transporters, organic anion transporting polypeptide (OATP) 1B1 and OATP1B3. Understanding and preventing the cytotoxicity of microcystin-LR is crucial to maintain human health. This chemoprevention study demonstrates that the herbal plant extract of iwajisha (20 µg/mL) reduced microcystin-LR cytotoxicity in OATP1B3-expressing cells by approximately six times. In addition, 20 µM acteoside, which is one of the major compounds in iwajisha, reduced microcystin-LR cytotoxicity by approximately 7.4 times. Acteoside could also reduce the cytotoxicity of other compounds, such as okadaic acid and nodularin, which are both substrates of OATP1B3 and inhibitors of PP1/PP2A. To investigate the mechanism by which the cytotoxicity of microcystin-LR is attenuated by acteosides, microcystin-LR and microcystin-LR-binding proteins in cells were examined after microcystin-LR and acteosides were co-exposed. Thus, acteoside noncompetitively inhibited microcystin-LR uptake by OATP1B3-expressing cells. Furthermore, acteoside inhibited the intracellular interaction of microcystin-LR with its binding protein(s), including the 22 kDa protein. Furthermore, using immunoblot analysis, acteoside induced the phosphorylation of extracellular signal-regulated kinase (ERK), which is one of the survival signaling molecules. These results suggest that acteoside reduces microcystin-LR cytotoxicity through several mechanisms, including the inhibition of microcystin-LR uptake via OATP1B3, and decreased interaction between microcystin-LR and its binding protein(s), and that ERK signaling activation contributes to the attenuation effect of acteoside against microcystin-LR cytotoxicity.

MeSH terms

  • Humans
  • Microcystins / metabolism
  • Microcystins / toxicity
  • Organic Anion Transporters* / metabolism
  • Organic Anion Transporters, Sodium-Independent*
  • Phenols / pharmacology
  • Solute Carrier Organic Anion Transporter Family Member 1B3

Substances

  • cyanoginosin LR
  • Organic Anion Transporters, Sodium-Independent
  • acteoside
  • Solute Carrier Organic Anion Transporter Family Member 1B3
  • Microcystins
  • Organic Anion Transporters
  • Phenols