Fabrication and enhanced visible-light photocatalytic H2production of B-doped N-deficient g-C3N4/CdS Hybrids with robust 2D/2D hetero-interface interaction

Nanotechnology. 2023 Jan 30;34(15). doi: 10.1088/1361-6528/acb1b6.

Abstract

2D layered photocatalysts with proper electronic structure have sparked much attention in the field of visible-light photocatalysis for H2production. Herein, by simply calcining the mixture of ultrathin g-C3N4(CNN) and NaBH4, heteroatom B and N defect were simultaneously introduced into g-C3N4. The obtained modified g-C3N4(BDCNN) was further coupled with 2D flower-like CdS nanosheet. The optimal 2D/2D BDCNN/CdS-15% heterojunction behaved ideal photocatalytic activity for H2revolution by water splitting, and the highest H2revolution rate was as high as 1013.8μmol g-1h-1, which was 6.7 times, 2 times, and 5.8 times of the corresponding values of pristine CNN, BDCNN and CdS respectively. It was evidenced that the band structure of 2D/2D BDCNN/CdS-15% was well tuned for better visible-light adsorption and higher separation efficiency of photo-induced carriers for enhancing H2revolution performance. The achievement in this study provided informative principles for exploring g-C3N4based heterojunctions with higher H2-production performance.

Keywords: 2D/2D heterojunction; B-dope; H2 production; N defect; g-C3N4.