CCN2 deficiency in smooth muscle cells triggers cell reprogramming and aggravates aneurysm development

JCI Insight. 2023 Jan 10;8(1):e162987. doi: 10.1172/jci.insight.162987.

Abstract

Vascular smooth muscle cell (SMC) phenotypic switching is widely recognized as a key mechanism responsible for the pathogenesis of several aortic diseases, such as aortic aneurysm. Cellular communication network factor 2 (CCN2), often upregulated in human pathologies and animal disease models, exerts myriad context-dependent biological functions. However, current understanding of the role of SMC-CCN2 in SMC phenotypic switching and its function in the pathology of abdominal aortic aneurysm (AAA) is lacking. Here, we show that SMC-restricted CCN2 deficiency causes AAA in the infrarenal aorta of angiotensin II-infused (Ang II-infused) hypercholesterolemic mice at a similar anatomic location to human AAA. Notably, the resistance of naive C57BL/6 WT mice to Ang II-induced AAA formation is lost upon silencing of CCN2 in SMC. Furthermore, the pro-AAA phenotype of SMC-CCN2-KO mice is recapitulated in a different model that involves the application of elastase-β-aminopropionitrile. Mechanistically, our findings reveal that CCN2 intersects with TGF-β signaling and regulates SMC marker expression. Deficiency of CCN2 triggers SMC reprograming associated with alterations in Krüppel-like factor 4 and contractile marker expression, and this reprograming likely contributes to the development of AAA in mice. These results identify SMC-CCN2 as potentially a novel regulator of SMC phenotypic switching and AA biology.

Keywords: Extracellular matrix; Vascular Biology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Aortic Aneurysm, Abdominal* / metabolism
  • Cellular Reprogramming
  • Humans
  • Mice
  • Mice, Inbred C57BL
  • Muscle, Smooth, Vascular* / pathology
  • Myocytes, Smooth Muscle / metabolism