Circadian-mediated regulation of cardiometabolic disorders and aging with time-restricted feeding

Obesity (Silver Spring). 2023 Feb;31 Suppl 1(Suppl 1):40-49. doi: 10.1002/oby.23664. Epub 2023 Jan 9.

Abstract

Circadian rhythms are present throughout biology, from the molecular level to complex behaviors such as eating and sleeping. They are driven by molecular clocks within cells, and different tissues can have unique rhythms. Circadian disruption can trigger obesity and other common metabolic disorders such as aging, diabetes, and cardiovascular disease, and circadian genes control metabolism. At an organismal level, feeding and fasting rhythms are key drivers of circadian rhythms. This underscores the bidirectional relationship between metabolism and circadian rhythms, and many metabolic disorders have circadian disruption or misalignment. Therefore, studying circadian rhythms may offer new avenues for understanding the etiology and management of obesity. This review describes how circadian rhythm dysregulation is linked with cardiometabolic disorders and how the lifestyle intervention of time-restricted feeding (TRF) regulates them. TRF reinforces feeding-fasting rhythms without reducing caloric intake and ameliorates metabolic disorders such as obesity and associated cardiac dysfunction, along with reducing inflammation. TRF optimizes the expression of genes and pathways related to normal metabolic function, linking metabolism with TRF's benefits and demonstrating the molecular link between metabolic disorders and circadian rhythms. Thus, TRF has tremendous therapeutic potential that could be easily adopted to reduce obesity-linked dysfunction and cardiometabolic disorders.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging / physiology
  • Cardiovascular Diseases*
  • Circadian Clocks*
  • Circadian Rhythm / physiology
  • Fasting / physiology
  • Feeding Behavior / physiology
  • Humans
  • Metabolic Diseases*
  • Obesity / metabolism