Cryptosporidium parvum maintains intracellular survival by activating the host cellular EGFR-PI3K/Akt signaling pathway

Mol Immunol. 2023 Feb:154:69-79. doi: 10.1016/j.molimm.2023.01.002. Epub 2023 Jan 6.

Abstract

Autophagy is a critical cellular mechanism in helping infected cells remove intracellular pathogens and is countered by pathogens maintaining intracellular survival by regulating autophagy through the manipulation of the host cellular signal transduction pathway. Cryptosporidium parvum is a zoonotic intracellular but extracytoplasmic protozoon that causes diarrhea in infants and young children worldwide. However, it is still unclear how Cryptosporidium adapts to intracellular survival. In the present study, we demonstrated that C. parvum could activate the EGFR-PI3K/Akt signaling pathway to promote intracellular survival in HCT-8 cells. The western blot results showed that C. parvum induced EGFR and Akt phosphorylation in HCT-8 cells. The EGFR inhibitor AG1478 decreased EGFR and Akt phosphorylation, and the PI3K inhibitor LY294002 impaired Akt phosphorylation induced by C. parvum in HCT-8 cells. Inhibition of EGFR or Akt decreased the number of intracellular parasites. Second, low-dose infection of C. parvum triggered complete autophagy and enhanced autophagic flux in HCT-8 cells. The expressions of mTOR and p62 were decreased, and the expressions of LC3 and Beclin1 were increased in C. parvum-infected HCT-8 cells. Transfection with siBeclin1 or siATG7 reduced LC3 accumulation, while lysosome inhibitor E64d+pepA increased LC3 accumulation induced by C. parvum in HCT-8 cells. Intracellular parasite proliferation was decreased when treated with autophagy inducer rapamycin, whereas autophagy inhibitor 3-MA, E64d+pep A, siBeclin1 or siATG7 increased intracellular parasites. Third, C. parvum inhibited autophagy killing to promote its own intracellular survival by activating EGFR-Akt signaling pathway. The EGFR inhibitor AG1478 enhanced autophagic flux, and Akt inhibitor IV increased LC3 accumulation and inhibited C. parvum proliferation in HCT-8 cells. Akt inhibitor IV-inhibited C. parvum proliferation was attenuated by E64d+pepA. In summary, C. parvum could maintain intracellular survival by inhibiting autophagy via EGFR-PI3K/Akt pathway. These results revealed a new mechanism for the interaction of C. parvum with host cells.

Keywords: Autophagy; Cryptosporidium parvum; EGFR-PI3K/Akt signaling pathway; Intracellular survival.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis
  • Autophagy / physiology
  • Child
  • Child, Preschool
  • Cryptosporidiosis*
  • Cryptosporidium parvum*
  • Cryptosporidium* / metabolism
  • ErbB Receptors
  • Humans
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins c-akt / metabolism
  • Signal Transduction / physiology

Substances

  • RTKI cpd
  • Proto-Oncogene Proteins c-akt
  • Phosphatidylinositol 3-Kinases
  • ErbB Receptors
  • EGFR protein, human