Phytochemical Screening, Antifungal, and Anticancer Activities of Medicinal Plants Thymelaea Hirsuta, Urginea Maritima, and Plantago Albicans

Biomed Res Int. 2022 Dec 30:2022:9544915. doi: 10.1155/2022/9544915. eCollection 2022.

Abstract

Ethyl acetate, ethanol, and acetone extracts of the medicinal plants Thymelaea hirsuta L., Urginea maritima L., and Plantago albicans L. (aerial parts) were evaluated for their phytochemical compositions, antimycotic activity against dermatophytes, and antiproliferative activity against different human cancer cell lines. Among them, the ethanolic extracts showed the highest phytochemical contents along with hyperactivities and were then selected for gas chromatography-mass spectrometry and Fourier-transform infrared spectroscopy analysis. The Fourier-transform infrared spectroscopy analysis confirmed the presence of different characteristic peak values with various functional chemical groups of the active components. However, U. maritima extracts through Fourier-transform infrared spectroscopy analysis showed distinctive peaks related to phenolic, amines, amides, aromatic, alkanes, alkyne, cyclopentanone, conjugated aldehyde, nitro, methoxy, uronic acids, aromatic esters, tertiary alcohol or ester, secondary and primary alcohols, aliphatic ether, sulfoxide, vinylidene, and halo compounds. Many bioactive main compounds with reported biological activities were detected by GC/MS (%) in the ethanolic extract of T. hirsuta, U. maritima, and P. albicans. All studied dermatophytes included a diverse set of virulence factors, including phospholipase, protease, keratinase, hemolysis, and melanoid production, all of which play vital roles in dermatophytic infection. Ethanolic extract of P. albicans inhibited the growth of Trichophyton soudanense totally and Trichophyton erinacei in addition to all Microsporum species. In contrast, the ethanolic extract of Trichophyton hirsuta at concentrations of 25 g/mL totally prevented the growth of all Trichophyton species. EtOH extract of U. maritima completely prevented the growth (100% inhibition) of all dermatophytic strains under study at the lowest concentration of 12.5 μg/mL. Scanning electron microscope analysis revealed considerable morphological modifications and structural alterations in dermatophyte species exposed to ethanolic extract of these plants. The viability of HCT-116, HepG-2, MCF-7, and HeLa cell lines was reduced after treatment with the ethanolic extracts of T. hirsuta, U. maritima, and P. albicans individually with IC50 values (10.0, 9.97, 48.5, and 56.24 μg/mL), (26.98, 25.0, 17.11, and 9.52 μg/mL), and (9.32, 7.46, 12.50, and 16.32 μg/mL), respectively. Our work revealed the significance of these traditional ethnomedical plants as potent sources for biologically active pharmaceuticals with potential applicability for the treatment of fungal and cancer diseases.

MeSH terms

  • Antifungal Agents / chemistry
  • Antifungal Agents / pharmacology
  • Drimia*
  • HeLa Cells
  • Humans
  • Phytochemicals / chemistry
  • Phytochemicals / pharmacology
  • Plant Extracts / chemistry
  • Plant Extracts / pharmacology
  • Plantago*
  • Plants, Medicinal* / chemistry
  • Thymelaeaceae*

Substances

  • Antifungal Agents
  • Plant Extracts
  • Phytochemicals