Monitoring Vehicle Pollution and Fuel Consumption Based on AI Camera System and Gas Emission Estimator Model

Sensors (Basel). 2022 Dec 28;23(1):312. doi: 10.3390/s23010312.

Abstract

Road traffic is responsible for the majority of air pollutant emissions in the cities, often presenting high concentrations that exceed the limits set by the EU. This poses a serious threat to human health. In this sense, modelling methods have been developed to estimate emission factors in the transport sector. Countries consider emission inventories to be important for assessing emission levels in order to identify air quality and to further contribute in this field to reduce hazardous emissions that affect human health and the environment. The main goal of this work is to design and implement an artificial intelligence-based (AI) system to estimate pollution and consumption of real-world traffic roads. The system is a pipeline structure that is comprised of three fundamental blocks: classification and localisation, screen coordinates to world coordinates transform and emission estimation. The authors propose a novel system that combines existing technologies, such as convolutional neural networks and emission models, to enable a camera to be an emission detector. Compared with other real-world emission measurement methods (LIDAR, speed and acceleration sensors, weather sensors and cameras), our system integrates all measurements into a single sensor: the camera combined with a processing unit. The system was tested on a ground truth dataset. The speed estimation obtained from our AI algorithm is compared with real data measurements resulting in a 5.59% average error. Then these estimations are fed to a model to understand how the errors propagate. This yielded an average error of 12.67% for emitted particle matter, 19.57% for emitted gases and 5.48% for consumed fuel and energy.

Keywords: AI; MOVESTAR; YOLO; emission model estimation; homography; speed estimation; sustainability.

MeSH terms

  • Air Pollutants* / analysis
  • Air Pollution* / analysis
  • Artificial Intelligence
  • Environmental Monitoring / methods
  • Gases
  • Humans
  • Particulate Matter / analysis
  • Traffic-Related Pollution*
  • Vehicle Emissions / analysis

Substances

  • Vehicle Emissions
  • Particulate Matter
  • Air Pollutants
  • Gases

Grants and funding

This work is supported by the projects entitled “Smart Ports and Electrification of Inland Traffic in Canarian Ports” (ProID2020010080) and “Mobile Electric Platform for Training in Marine Technologies and R&D Support” (EIS 2021 09) both funded by the Canarian Agency for Research, Innovation and Information Society. O.G.-C. has been partially supported by the Catalina Ruiz training aid program for research personnel of the Regional Ministry of Economy, Knowledge, and Employment, as well as the European Social Fund.