Diagnosis of Operating Conditions of the Electrical Submersible Pump via Machine Learning

Sensors (Basel). 2022 Dec 27;23(1):279. doi: 10.3390/s23010279.

Abstract

In wells that operate by electrical submersible pump (ESP), the use of automation tools becomes essential in the interpretation of data. However, the fact that the wells work with automated systems does not guarantee the early diagnosis of operating conditions. The analysis of amperimetric charts is one of the ways to identify fail conditions. Generally, the analysis of these histographics is performed by operators who are often overloaded, generating a decrease in the efficiency of observing the well operating conditions. Currently, technologies based on machine learning (ML) algorithms create solutions to early diagnose abnormalities in the well's operation. Thus, this work aims to provide a proposal for detecting the operating conditions of the ESP pump from electrical current data from 24 wells in the city of Mossoró, Rio Grande do Norte state, Brazil. The algorithms used were Decision Tree, Support Vector Machine, K-Nearest Neighbor and Neural Network. The algorithms were tested without and with hyperparameter tuning based on a training dataset. The results confirm that the application of the ML algorithm is feasible for classifying the operating conditions of the ESP pump, as all had an accuracy greater than 87%, with the best result being the application of the SVM model, which reached an accuracy of 93%.

Keywords: artificial lift; classification algorithms; electrical submersible pump; machine learning.

MeSH terms

  • Algorithms*
  • Early Diagnosis
  • Machine Learning*
  • Neural Networks, Computer
  • Support Vector Machine