Decoupling of Dual-Polarized Antenna Arrays Using Non-Resonant Metasurface

Sensors (Basel). 2022 Dec 23;23(1):152. doi: 10.3390/s23010152.

Abstract

A non-resonant metasurface (NRMS) concept is reported in this paper to improve the isolation of dual-polarized and wideband large-scale antenna arrays. By properly designing the NRMS, it can perform stable negative permeability and positive permittivity along the tangential direction of the NRMS within a wide band, which can be fully employed to suppress the mutual couplings of large-scale antenna arrays. At the same time, the proposed NRMS can also result in positive permittivity and permeability along the normal direction of the NRMS, which guarantees the free propagation of electromagnetic waves from antenna arrays along the normal direction. For demonstration, a 4×4 dual-polarized antenna array loading with the proposed NRMS is designed to improve the isolations of the antenna array. The simulations demonstrate that the isolations among all ports are over 24 dB from 4.36 to 4.94 GHz, which are experimentally verified by the measured results. Moreover, the radiation patterns of antenna elements are still maintained after leveraging the proposed NRMS. Due to the simple structure of the proposed NRMS, it is very promising to be widely employed for massive MIMO antenna arrays.

Keywords: dual-polarized; large-scale antenna arrays; mutual decoupling; non-resonant metasurface (NRMS); wideband.

Grants and funding

This research received no external funding.