Reinforcing a Thermoplastic Starch/Poly(butylene adipate-co-terephthalate) Composite Foam with Polyethylene Glycol under Supercritical Carbon Dioxide

Polymers (Basel). 2022 Dec 28;15(1):129. doi: 10.3390/polym15010129.

Abstract

Biodegradable foams are a potential substitute for most fossil-fuel-derived polymer foams currently used in the cushion furniture-making industry. Thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate) (PBAT) are biodegradable polymers, although their poor compatibility does not support the foam-forming process. In this study, we investigated the effect of polyethylene glycol (PEG) with or without silane A (SA) on the foam density, cell structure and tensile properties of TPS/PBAT blends. The challenges in foam forming were explored through various temperature and pressure values under supercritical carbon dioxide (CO2) conditions. The obtained experimental results indicate that PEG and SA act as a plasticizer and compatibilizer, respectively. The 50% (TPS with SA + PEG)/50% PBAT blends generally produce foams that have a lower foam density and better cell structure than those of 50% (TPS with PEG)/50% PBAT blends. The tensile property of each 50% (TPS with SA + PEG)/50% PBAT foam is generally better than that of each 50% (TPS with PEG)/50% PBAT foam.

Keywords: foam; poly(butylene adipate-co-terephthalate); polyethylene glycol; starch; supercritical CO2.

Grants and funding

This work was supported by (1) the Ministry of Science and Technology, Taiwan (Contracts: MOST 109-2221-E-027-114-MY3, MOST 110-2222-E-214-001-MY2, MOST 110-2622-E-027-019) and (2) I-Shou University (Contract: ISU 111-S-01). The authors also thank the National Science Council of Taiwan (NSC-108-2221-E-182A-002) for financially supporting this research.